Catalytic reduction of dinitrogen to ammonia at a single molybdenum center.
نویسندگان
چکیده
Since our discovery of the catalytic reduction of dinitrogen to ammonia at a single molybdenum center, we have embarked on a variety of studies designed to further understand this complex reaction cycle. These include studies of both individual reaction steps and of ligand variations. An important step in the reaction sequence is exchange of ammonia for dinitrogen in neutral molybdenum(III) compounds. We have found that this exchange reaction is first order in dinitrogen and relatively fast (complete in <1 h) at 1 atm of dinitrogen. Variations of the terphenyl substituents in the triamidoamine ligand demonstrate that the original ligand is not unique in its ability to yield successful catalysts. However, complexes that contain sterically less demanding ligands fail to catalyze formation of ammonia from dinitrogen; it is proposed as a consequence of a base-catalyzed decomposition of a diazenido (Mo-N=NH) intermediate.
منابع مشابه
Reduction of dinitrogen.
C onversion of dinitrogen to ammonia is required for all life. This conversion is accomplished by metalloenzymes on a scale of 108 tons year, a scale equivalent to that of the Haber–Bosch process (1) for making ammonia from dinitrogen and dihydrogen at high temperatures (350–550°C) and pressures [150–350 atmosphere (atm); 1 atm 101.3 kPa]. Although the benefit of crop rotation has been known fo...
متن کاملNitrogen fixation catalyzed by ferrocene-substituted dinitrogen-bridged dimolybdenum-dinitrogen complexes: unique behavior of ferrocene moiety as redox active site.
A series of dinitrogen-bridged dimolybdenum-dinitrogen complexes bearing metallocene-substituted PNP-pincer ligands is synthesized by the reduction of the corresponding monomeric molybdenum-trichloride complexes under 1 atm of molecular dinitrogen. Introduction of ferrocene as a redox-active moiety to the pyridine ring of the PNP-pincer ligand increases the catalytic activity for the formation ...
متن کاملHigh oxidation state coordination chemistry with triamidoamine tungsten and molybdenum complexes
In this lecture I will focus on some recent developments in the chemistry of high oxidation state dinitrogen complexes with an emphasis on recent results involving triamidoamine molybdenum complexes. The heterogeneous iron-catalyzed Haber-Bosch reduction of dinitrogen to ammonia at relatively high pressures (200-400 atm) and temperatures (350-650OC) was the f is t and most dramatic man-made cat...
متن کاملUnique behaviour of dinitrogen-bridged dimolybdenum complexes bearing pincer ligand towards catalytic formation of ammonia
It is vital to design effective nitrogen fixation systems that operate under mild conditions, and to this end we recently reported an example of the catalytic formation of ammonia using a dinitrogen-bridged dimolybdenum complex bearing a pincer ligand, where up to twenty three equivalents of ammonia were produced based on the catalyst. Here we study the origin of the catalytic behaviour of the ...
متن کاملMolybdenum triamidoamine systems. Reactions involving dihydrogen relevant to catalytic reduction of dinitrogen.
[HIPTN(3)N]Mo(N(2)) (MoN(2)) ([HIPTN(3)N](3-) = [(HIPTNCH(2)CH(2))(3)N](3-) where HIPT = 3,5-(2,4,6-i-Pr(3)C(6)H(2))(2)C(6)H(3)) reacts with dihydrogen slowly (days) at 22 degrees C to yield [HIPTN(3)N]MoH(2) (MoH(2)), a compound whose properties are most consistent with it being a dihydrogen complex of Mo(III). The intermediate in the slow reaction between MoN(2) and H(2) is proposed to be [HI...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 103 46 شماره
صفحات -
تاریخ انتشار 2003